
pure:dyne

Aymeric Mansoux and Antonios Galanopoulos and Chun Lee
Goto10

12, rue Charles Gide
86 000 Poitiers

France
contact@goto10.org

Abstract

pure:dyne is a live GNU/Linux distribution optimized
for the purpose of real-time audio and visual perfor-
mance. As its name suggests, pure:dyne is built upon the
dyne:II platform and originally optimized for PureData.
However, pure:dyne now also contains several other in-
teresting and useful creative software, and is becoming
evermore practical to be used as a complete GNU/Linux
distribution for both media art and daily tasks. This
paper therefore aims to introduce and discuss several as-
pects surrounding pure:dyne thus encouraging the usage
and feedback of this project.

Keywords

goto10 dyne live-distribution PureData Supercollider
Csound media-art FLOSS

1 Introduction

The development of pure:dyne 1 can be traced back
to the inclusion of PureData in the dyne:bolic liveCD
distribution 2. As this addition later became increas-
ingly popular, there was suddenly a demand to in-
crease its support for PureData in a more serious
production context. Meanwhile, the dyne:II 3 core
that Denis Rojo 4 had been developing for the forth-
coming version of dyne:bolic provided the necessary
development tools needed to make such customized
distribution for PureData. As a result, a collabora-
tive effort had begun between dyne.org and Goto10
in early 2005 to work towards a distribution based
on the dyne:II core.

After a year of development, pure:dyne started to
take shape and began its beta testing. In late 2006,
pure:dyne officially left beta to have its first pub-
lic release. Today, pure:dyne gathers a growing user
community and has been used in numerous work-
shops and performances.

Although many multimedia oriented live
GNU/Linux distributions can be found nowa-
days, many aspects of pure:dyne still remain unique
amongst them. This paper hopefully will introduce

1http://puredyne.goto10.org
2The first inclusion of PureData can be found in

dyne:bolic1.4
3dyne:II is platform in which a fully functional system can

be built upon it. for more detail, please refer to section of
this paper.

4founder of Rasta Software and the key maintainer of
dyne:bolic

and demonstrate such features and design, and
ultimately encourage its usage.

2 Design principles

Throughout the process of making pure:dyne, sev-
eral design principles were clearly outlined from the
beginning. They can be briefly listed as below:

• pure:dyne is made by practitioners for practi-
tioners

• pure:dyne should be accessible to non technical
users

• pure:dyne will be optimized and kept minimal

One of the most important aspects of pure:dyne
is that it attempts to offer both “practical” and
“portable” solutions for the practitioners in the
fields of FLOSS based digital art. Although there
are many portable distributions available, they are
mostly used for demonstration purposes. pure:dyne,
on the other hand, allows artists to build extensive
works upon it while keeping the entire system, in-
cluding artists’ works, very portable. This makes it
an attractive alternative for artists who wish to de-
velop projects but do not have access to a dedicated
environment.

Moreover, accessibility is also an important part
of pure:dyne. pure:dyne recognizes artists who in-
tend to take advantage of the innovations in creative
FLOSS but do not have the resources and abilities
to walk through the lengthy installation, configura-
tion and even compilation of such software. Because
of this, pure:dyne aims to provide a working envi-
ronment that requires a minimal learning curve to
be productive with it.

Lastly, pure:dyne follows a minimalist approach in
system setup. This enables it to be more streamlined
and “clutter free”. For example, the default desktop
environment is FluxBox as window manager and ap-
plications such as Rox-Filer and Xfe can be used for
handling the conventional representation and navi-
gation of directories. pure:dyne also includes win-
dow managers such as ratpoison, evilwm and dwm.
Such an approach enables users to achieve greater
productivity when using the system.



3 Usage

Before this paper proceeds further, there are two im-
portant concepts in pure:dyne that should be clari-
fied.

• Dock - A dock refers to an “installation” of
pure:dyne onto the host system. A dock con-
tains all necessary components that are required
to boot pure:dyne entirely from the storage
device. The process of docking is extremely
straightforward, it only requires copying the
/dyne directory from the CD or ISO image onto
a partition readable 5 by pure:dyne.

• Nest - A nest (.nst) is a file that a user can
create once pure:dyne has successfully booted.
This file contains a user’s home directory and
configuration files 6. The nest file can be stored
either on the hard disk or on a portable stor-
age device such as a usb key. During the boot
process, pure:dyne will look for the nest in any
of the partitions it finds and mounts the nest
at the appropriate location. Through the inte-
gration of UnionFS 7, users can easily save and
store any modifications made on the system.

With further development of the dock and the nest
in dyne:II 8, pure:dyne can be used with a great deal
of flexibility. For example, a system running from a
CD or hard disk, in combination with a portable
storage device will result in a complete functional
system. Once the system is successfully booted, a
user can simply write to his or her own home di-
rectory and continue working the same way no mat-
ter which storage device is being used. One other
obvious advantage of the docking system is that
pure:dyne can co-exist with other operating systems
in a very straight forward manner, as everything
is contained in one single directory. Updating to
a newer version of pure:dyne only requires to over-
write the content of the dyne directory. Lastly, by
simply creating new users following the conventional
GNU/Linux method, a nest can also support a mul-
tiple user system.

dyne:II also contains a modular system in which
applications can be packaged and distributed.
Each package is a compressed 9 .dyne file in the
/dyne/modules directory. For instance, the applica-
tions contained in pure:dyne are simply a pure.dyne
module of dyne:II. This means that users and de-
velopers can simply package their favorite applica-

5current supported filesystems are: fat vfat msdos ntfs ufs
befs xfs reiserfs hfsplus ext2 ext3

6A nest contains the /home, /root, /var, /tmp and
/usr/local

7UnionFS allows transparent overlay of files and directory
from different filesystems. http://www.unionfs.org

8Both dock and nest existed in dyne:I. However, these two
elements were significantly further developed in dyne:II

9.dyne modules use the squashfs read-only filesystem.
http://squashfs.sourceforge.net

tions 10 and exchange between them. To include
a new module, simply copy the .dyne file into the
/dyne/modules directory and either reboot or mount
the module directly.

To summarize, pure:dyne can be used/installed in
the following ways:

• Used with the CD alone, without saving user
data

• Used with the CD in conjunction with a
portable storage device that contains the nest

• Used with a dock on the hard disk plus a nest
either on the hard disk or portable storage de-
vice

• Used with both the dock and the nest on the
portable storage device. for example, running
pure:dyne entirely from solid state memory.

4 Optimization

As mentioned previously, pure:dyne’s main emphasis
is in the context of real-time applications. Because
of this, pure:dyne consists of several optimizations
that are different from dyne:bolic 2.x.

Firstly, the optimization is targeted at the i686 ar-
chitecture. This is because pure:dyne aims to sup-
port more modern hardware, as the real-time au-
dio/visual applications are typically more demand-
ing on cpu cycles. pure:dyne employs the kernel
based on Ingo Molnars’s real-time patch.

Secondly, pure:dyne makes the installation of nec-
essary drivers to take advantage of the hardware pos-
sible and straightforward. For example, one can eas-
ily install the ATI and NVIDIA graphics driver to
take advantage of the modern graphics cards in order
to obtain the acceleration required by video/visual
applications. Furthermore, it also includes support
for various firewire sound cards through the FreeBoB
driver.

Lastly, the gcc compilation flags used in pure:dyne
are typically more aggressive than those used in
dyne:bolic or usual binary based GNU/Linux dis-
tributions. Currently, relevant applications in
pure:dyne are compiled with the following flags: -
O3 -ffast-math -fomit-frame-pointer -mmmx -msse
-pipe.

5 Applications

Applications that are optimized in pure:dyne can be
briefly listed below 11 consult the pure:dyne website:

• PureData

– PureData

– Gem, PDP, PiDiP, GridFlow of the exter-
nals and abstractions from the PureData
cvs

10currently there are modules for Ardour, network tools,
Gimp, OpenOffice, BitTorrent, dvd authoring and more

11For the complete listing, please



• Audio

– SuperCollider

– Chuck

– Csound

• Visual

– Fluxus

– Packet forth

Besides the pure.dyne module, the pure:dyne dis-
tribution also comes with the audio.dyne module
from dyne:bolic 2.x which provides the applications
for hard disk recording, sequencing, and sound edit-
ing. Furthermore, Jack is provided by the dyne:II
core. As a result, the combination of pure:dyne with
the audio module would result in a fairly comprehen-
sive digital audio workstation.

6 dyne:II and pure:dyne

As mentioned previously, pure:dyne is built using
the dyne:II platform. There are, however, some sub-
tle differences that should be pointed out.

dyne:II is a system derived from LFS12 and initi-
ated by Denis Rojo and Alex Gnoli. It provides the
core functionalities such as booting, nesting, dock-
ing and the modular system. In other words, dyne:II
offers a platform on which a complete live distribu-
tion can be built. For example, dyne:bolic 2.x is
developped using the dyne:II core system.

pure:dyne, on the other hand, is not only a live
distribution built using the generic dyne:II, but also
contains several customized core components. Be-
cause of this, pure:dyne can be said to be using a cus-
tomized dyne:II system developed by Goto10. For
example, pure:dyne contains its own kernel and has
a different optimization policy. Moreover, pure:dyne
also provides some developers’ tool that are unique
to it. In short, pure:dyne not only consists of a
pure.dyne module but also its own branch of the
dyne:II core system.

The relationship between the two cores is by no
means independent of each other. That is to say, the
development remains very close between them. As
a result, changes can be merged. For example, new
features introduced in the modified pure:dyne core
could potentially be merged into the generic dyne:II
core after they are tested and have proven to be
stable. Similarly, new components in generic dyne:II
core can be adopted by pure:dyne’s customized core.
Last but not least, any dyne modules are universal
whichs allows applications to be used and shared
between the users of these different systems.

7 Which Dyne?

Because of the differences between dyne:bolic 2.x
and pure:dyne, it can sometimes be ambiguous as
to which of the two should be used. In gen-
eral, dyne:bolic 2.x offers more stability across a

12Linux From Scratch. http://www.linuxfromscratch.org/

wider range of legacy hardware and pure:dyne is
somehow more “bleeding-edge”, it adopts the latest
drivers and patches to gain performance. Moreover,
pure:dyne is created for a very specific context, while
dyne:bolic 2.x can be seen as more generic.

pure:dyne dyne:bolic 2.x
Type live-distribution live-distribution
Core dyneII dyneII

customized generic
Module policy .dyne .dyne

Target i686 i586
hardware

Optimization aggressive generic

Table 1: comparison of pure:dyne and dyne:bolic
2.x. note that only the audio related modules are
listed in the table

8 Current status

Currently, pure:dyne is at its first official release
(version 2.3.6). It has already proved to be usable
and stable enough to be employed in real world sce-
narios. For example, pure:dyne has been used in
many workshops where participants are able to learn
the software and have a complete and functional sys-
tem to carry on their learning after workshops ended.
Furthermore, pure:dyne has also been seen used in
live performances and even installations for a period
of weeks without problems.

9 To do

Efforts will be aimed towards the development of the
following parts of pure:dyne at this moment.

9.1 Documentation

Apart from the actual live distribution, pure:dyne
would also like to provide documentation for the nec-
essary components surrounding its usage and devel-
opment. For example, there should be a knowledge
base for users to learn more about the software it
includes and also on more advanced configurations.
Developers should also be able to find necessary in-
formation to further customize it to suit their needs
and ultimately take part in producing the future re-
leases.

9.2 Hardware support

pure:dyne would also like to provide more stable sup-
port for hardware that is commonly used by prac-
titioners in the digital art scene. For example, the
support for the MacIntel machines is currently be-
ing tested and will hopefully be included in the next
stable release.

9.3 Software package

pure:dyne is always keen to discover interesting and
innovative creative software to include in its package.
This is a constant reminder for the pure:dyne devel-
opers. After the release of the second stable version,



a particular attention will be given to a compilation
of interesting FLOSS based software art.

10 Conclusion

The collaboration between dyne.org and goto10.org
has led to the successful production of pure:dyne.
More importantly, many of its current users find
pure:dyne useful and it has proven to fulfill its orig-
inal goals. pure:dyne hopes to continue the fruitful
relationship with dyne.org to achieve a higher stan-
dard in the future. This would hopefully contribute
to raising the awareness of FLOSS culture and tools
in the digital arts scene.

11 Acknowledgment

Goto10 would like to thank Denis Rojo and Alex
Gnoli for developing dyne:II and their valuable help
and advices throughout the making of pure:dyne.
Goto10 would also like to thank the digital research
unit of Huddersfield in UK for their support during
the start of the project. Goto10 would also like to
thank BEK in Bergen and Waag Society in Amster-
dam for providing the hosting solution for pure:dyne.
Lastly, Goto10 would like to thank everyone who
contributed to pure:dyne by developing it, using it
and disseminating it.


